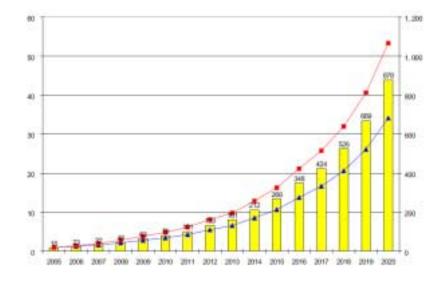


State of Art in eSRAM design and validation flow

Presentation of D1.1 document


Outline

- Introduction: eSRAM in SoC market
- General overview of the eSRAM design
- Design and verification of transistor based design
 - Design and verification of critical path
 - Design and verification of full cut
- Design and verification of functional view
- Overview of the weaknesses of today flow

Introduction eSRAM in SoC market

- Number of embedded memory increases with the complexity of the SoC (>400 items).
- Performances and area are key questions for the cost and the performances of the final product.
- Embedded memories are mainly eSRAM

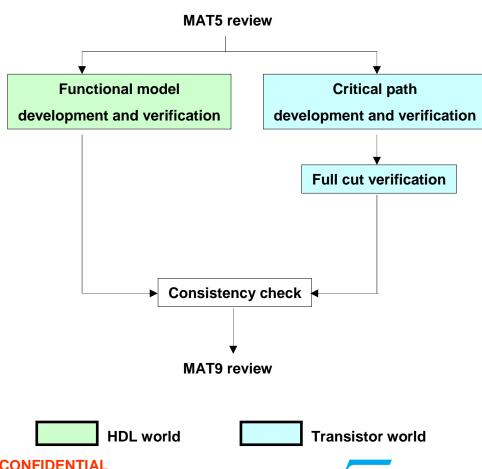
Number of processor customized for a specific function (right axis)

Total memory size normalized 2005

Total logic size normalized 2005 (right axis)

> ITRS 2005 System **Drivers**

COMPANY CONFIDENTIAL

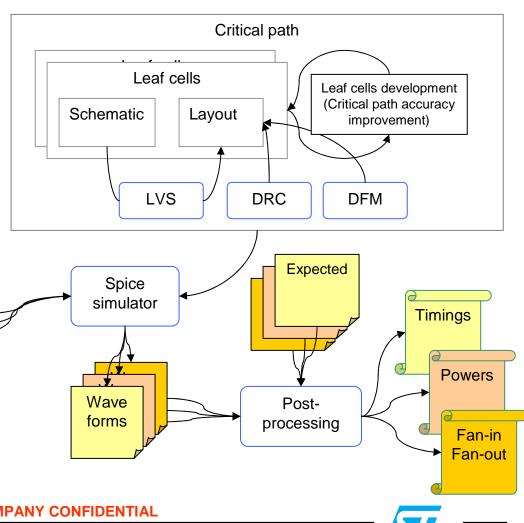


General overview of the eSRAM design Quality items

Quality steps	Description	Development processes to be achieved		
		Specifications	CAD flow	Silicon
MAT5	Memory specification frozen Customers identified	X		
MAT9	Memory compiler ready Basic views built and checked	X	Basic views generated	
MAT10	Additional derived views are generated	X	All views generated	
MAT20	Design successfully checked on silicon	X	All views generated	Functional tests done
MAT30	Design successfully checked on all temperature ranges.	X	All views generated	Reliability test done

General overview of the eSRAM design Design flow

- →HDL and Transistor worlds are independent: they are compared at the end of the flow
- Transistor based development are spit into 2 steps
 - Tune the model on a simplified eSRAM
 - Compare the results with the real eSRAM

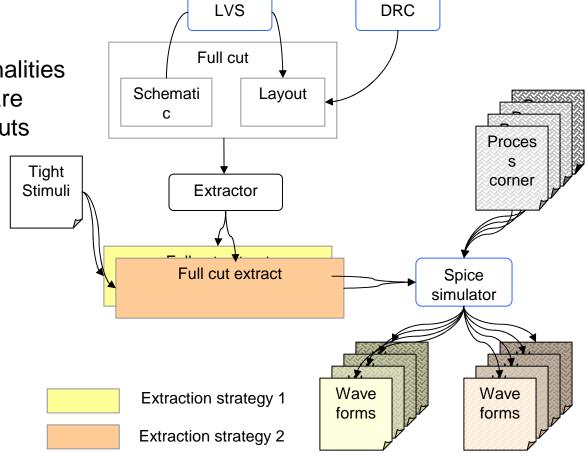


COMPANY CONFIDENTIAL

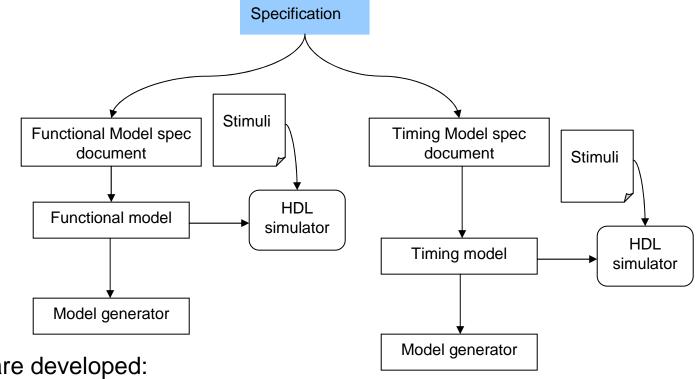
Transistor based design Design and verification of critical path

- → Working on simplified design to win run time
- Perform all the characterization on this design (timing, power...)

Stimuli



COMPANY CONFIDENTIAL



Transistor based design Design and verification of full cut

Performances and functionalities fund with the critical path are checked in on corner full-cuts

Design and verification of functional view

- Two models are developed:
 - Timed
 - Functional
- Use digital verification strategies

Overview of the weaknesses of today flow (1/2)

Transistor based design flow

- Use only transistor based simulation
 Cannot cover all cases
- Design and vectors are developed by the same people
 - There is no cross-check performed with independent point of view
 - Timings are not optimum
 - All the paths are not checked
 - Debug at silicon must be avoided as soon as possible: very costly, very complex and very long

Overview of the weaknesses of today flow (2/2)

- Need timing study:
 A kind of static timing analysis
- Need Functional analysis
 A kind of property checking tool
- Good solution: Check functionalities with timings

There is no industrial solutions to check timings and functionalities in one shot