

Capacitance Sensing - Calibrating CapSense with
the CSR User Module

February 22, 2006 Document No. 001-25459 Rev. ** 1

AN2355
Author: Darrin Vallis

Associated Project: Yes
Associated Part Family: CY8C21x24, CY8C24x94

GET FREE SAMPLES HERE

Software Version: PSoC® Designer™ 4.2 SP3
Associated Application Notes: AN2233a, AN2277, AN2292, AN2318

Application Notes Abstract
This Application Note describes the steps necessary to select, place and calibrate the CSR (Capacitive Switch Relaxation
Oscillator) User Module for CapSense applications.

Introduction
Cypress’ PSoC is an extremely versatile system-on-chip
device. Its capabilities allow engineers to solve problems
and develop exciting new products. One of the most
unique features available in PSoC is capacitive sensing.
PSoC is able to detect the presence of a finger through
glass, plastic, acrylic or many other non-metallic materials,
using a simple PCB trace as the sensor.

See Application Note AN2233a Capacitive Switch
Scan”for more on the actual physics and electrical
engineering of PSoC capacitive sensing.

Designers are free to implement buttons, sliders or any
type of touch-based user interface. This is a significant
advantage for consumer electronics. Many of the most
popular devices on the market today have a PSoC
capacitive sense interface.

This Application Note helps an engineer implement their
first capacitive sense design. Even though PSoC Designer
has a user module that provides all necessary hardware
connections, software APIs, and does a lot of
sophisticated background processing, it still has to be
configured correctly.

Background Requirements
Designers must be at least familiar with PSoC architecture
and the PSoC Designer development environment.
Cypress Field Applications Engineers are available for just
such information. Go to http://www.cypress.com/, click on
“About Cypress” in the sidebar and then “Cypress
Locations.” Local Sales Offices can put designers in touch
with FAEs for questions or even a quick PSoC training.

Building a Project
This section describes how to select devices and how to
select, place and configure necessary user modules
(UMs).

Step 1: Creating a Project
Create a new project with a CapSense-enabled device.
These CapSense-enabled parts include those in the
CY8C21x34 and CY8C24x94 families. The example
project for this Application Note uses the CY8C21434-
24LFXI, a 32-pin QFN with 28 CapSense I/Os.

Step 2: Selecting User Modules
Under the User Module Selection View in PSoC Designer,
select the category “MUXs” to see the CSR User Module.
Double-click on the icon to place the CSR User Modules
into your project. The default name for the UM is
“CSR_1.” It is possible to rename the UM to whatever is
easy to use.

The example project for this Application Note has
renamed the CSR UM “SENSE” for ease of coding later
on.

It is also good practice to drop in a communication
interface. The example project uses I2C. The EZI2C User
Module is easy to configure and work with. This UM has
been renamed “I2C.”

User module selections are shown in Figure 1.

[+] Feedback

http://www.cypress.com/samplerequest
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_1

AN2355

Figure 1. User Module Selection

Step 3: Placing User Modules
Before writing a main loop, it is necessary to place the
user modules into their respective blocks. The CSR User
Module occupies the first 3 digital blocks and the first
analog column of the PSoC analog and digital resources.
Right-click to place the CSR UM.

Place the CSR UM first. Blocks that can be used by the
CSR are fixed.

Step 4: Assigning Pins
Once the UM is placed, right-click on any block to run the
CSR Wizard. Enter the number of buttons and sliders in
the boxes at the too of the screen. This is shown in Figure
3 (A) and (B). Once the number of sliders has been set,
set the number of pins to be used in each slider, as shown
in Figure 3 (C). Set the resolution of the slider, Figure 3
(D). After each setting, the wizard will prompt the user for
confirmation as shown in Figure 2.

Figure 2. Wizard Setting Confirmation

Figure 3. CSR Wizard

Drag and drop the switches you want onto the I/O ports,
as shown in Figure 4.

Figure 4. Wizard Operation Screen

Press “OK” to exit the Wizard.

B

A

C

D

February 22, 2006 Document No. 001-25459 Rev. ** 2

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_2

AN2355

In the example project for this Application Note, only 8
buttons are used. These buttons correspond to pins on
Port 0. The final Wizard display for the example project is
shown in Figure 5.

Figure 5. Example Project Wizard Setup

Step 5: Configuring User Modules
It is necessary to assign pins to other user modules if not
already complete. For the example project, the I2C
communication pins are P1[0] (SDA) and P1[1] (SCL).

The CSR User Module has several options in the User
Module Parameters window. These depend on design
features that are decided later in the project development.
However, it is wise to set the Method to “Period” as shown
in Figure 6.

Figure 6. Setting Scanning Method

Step 6: Configuring Other Pins
Before building the project, select one pin per switch in the
I/O list and name them for LEDs. Set the drive mode to
“Strong.” This is shown in Figure 7.

The switches are used to indicate when a switch is
pressed. Build the project and navigate to the program,
main().

Figure 7. Setting LED Drives

Program Structure
It’s always excellent coding practice to keep things simple.
Example code for the project can be found in Appendix 1.
The main loop basically does a one-time configuration of
the I/O, I2C and the CSR parameters. After that, it loops
forever, scanning buttons, handling an interrupt pin and
setting LEDs. That’s it.

Tuning the CSR User Module
While all the parameters exist to build and run a project,
there are several values that must be calibrated and tuned
to specific boards and specific buttons. This is done both
in the Device Editor and the Application Editor of PSoC
Designer.

Setting Up for Data Receipt
Before tuning can begin, it is necessary to install a method
for viewing the capacitive sense data that is gathered by
the CSR UM in the application. Though PSoC Designer
includes excellent debug capabilities with the ICE and flex
pods, a different approach is required when working with
capacitive sensing.

The CSR senses finger presence via very small changes
in capacitance. A flex pod will have VERY different
electrical characteristics than a regular PSoC soldered
onto your board.

If it is absolutely necessary to have the CSR working at
the same time as a flex pod and ICE, an #ifdef
statement can be used to re-define CSR parameters when
a pod is attached.

For simple projects like the one in this Application Note,
I2C is an excellent way to tune the CSR.

Note The author’s project required the use of I2C
communication. Therefore, I2C was the logical choice for
data read. An I2C master from M3 Electronics
(http://www.m3electronics.biz/) was used.

February 22, 2006 Document No. 001-25459 Rev. ** 3

[+] Feedback

http://www.m3electronics.biz/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_3

AN2355

The data that must be monitored for tuning is best dealt
with within a structure:

Code 1. Code for #ifdef Statement
st
{

ruct I2C_RegType

 // Control register
 BYTE Control;

// LED On/Off register
 BYTE LEDs;

// Button state
 BYTE Buttons;

#ifdef debug
 // Button raw data
 int counts[NBUTTONS];

// Baseline data
 int baseline[NBUTTONS];

 // Button differences
 int difference[NBUTTONS];

#endif
}
2Cregs; I

The #ifdef is used to include debug data on I2C for
tuning the board. In PSoC Designer, go to PROJECT >>
SETTINGS to see an entry box labeled “Macro Defines.”
Any symbol typed in here is passed to the compiler during
build, allowing code to be included or excluded as needed.

As for the data structure:

� “Control” is an I2C-accessible byte providing control of
LEDs, interrupt polarity and other settings. This is
optional, but often useful.

� “LEDs” is an I2C-accessible register allowing the user
to set LEDs over I2C. This may not be necessary for
some applications.

� “Buttons” is a byte-wide I2C register showing the
ON/OFF status of each button.

When compiled for debug:
� “Counts” shows the raw counts being read on each

switch by the CSR UM.

� “Baseline” is automatically updated by the UM and
provides compensation for environmental changes
over time.

� “Difference” is very important. It shows the difference
in counts between one button scan and the next. The
CSR decides if a button has been pressed based on
this “difference“ data.

Electrical Description
Now that there are mechanisms to see what’s going on
inside PSoC during runtime, it is time to tune the CSR UM.
First, a basic description of the electrical system is
described below.

For a complete description of the electrical circuit for
capacitive sensing using the PSoC, please see application
note AN2233a.

Figure 8 shows the basic setup of the relaxation oscillator
for capacitive sensing. The sensor pad capacitor (A) is
charged to a threshold on the comparator (B) with an
internal current source (C). When the comparator reaches
the threshold, a switch (D) is closed and the sensor
capacitor is discharged.

Figure 8. Basic Relaxation Oscillator Circuit

iCHARGE

VBG

VDD

COMP

C

B

A

D

February 22, 2006 Document No. 001-25459 Rev. ** 4

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_4

AN2355

The CY8C21x34 series of PSoC devices has specialized
circuitry for automatically charging and discharging an
external capacitor. For capacitive sensing, the capacitor is
a PCB pad and trace, whose capacitance is altered by the
presence of conductive object such as a finger. As the
capacitance varies, so does the rate at which the oscillator
charges (in the CY8C21x34 devices, the discharge time is
fixed at 2 clock cycles).

The voltage on the capacitor (sensor) is shown by the
waveforms in Figure 9a (no finger) and 9c (finger). The
comparator output is shown in Figure 9b (no finger) and
9d (finger).

Figure 9. (a) Sensor Capacitor Voltage, no Finger
(b) Comparator Output, no Finger

(c) Sensor Capacitor Voltage, Finger
(d) Comparator Output, Finger

a)

b)

c)

d)

A timer is used to determine the length of time necessary
to charge the capacitor to the threshold with the circuit
described in Figure 8.

Figure 10. Counting Circuit

8-Bit PWM1

SYSCLK

16-Bit Timer
Enable

The clock for the PWM (A) is the relaxation oscillator’s
comparator output. The PWM gates a 16-bit timer (B). It is
the number of clock cycles that is the basic unit of
measurement for the CSR UM. The charge waveform and
associate clock cycles are shown in Figure 11.

Figure 11. (a) Sensor Charge Waveform and
(b) Clock Cycles

a)

b)

All of the data that is used and sent by the PSoC is with
regard to these clock cycles. PSoC is not measuring
capacitance directly, rather the amount of time necessary
to charge a capacitor.

Now, for Tuning…
The basic steps for tuning the CSR User Module are:

1. Set DAC current.

2. Set Scan Speed.

3. Adjust Thresholds (Finger and Noise).

Step 1: Setting the DAC Current
Tuning the CSR UM begins with setting frequency of
oscillation for each sensor. This oscillation is the charge-
discharge cycle on the sensor capacitor. The rate of
charge on the capacitor is a factor of the size of the
capacitor and the current that is used to charge it to the
threshold voltage. The first parameter is fixed in hardware
and is what is being measured. It is the second parameter,
the DAC current, over which the designer has control.

To start, it is necessary to choose an arbitrary DAC
current and set it. This is done using the SetDacCurrent()
API call. An example setting the current to 10, using low
range is shown in Code 2.

Code 2. Code for Setting the DAC Current

SENSE_SetDacCurrent(10,SENSE_DAC_LOW);

This drives a certain amount of current out of the pin and
into the trace, resulting in a specific frequency of
oscillation. The current setting is incremented 69 nA in low
mode and 2 μA is high mode. In the example, the DAC
current is 690 nA. Due to the implementation of CSR
hardware within PSoC, the optimal operating frequency for
this oscillation is 80 kHz or less.

B

A

Determine the current frequency by setting scan speed to
three units with the following API call.

Code 3. Code for Determining the Current Frequency

SENSE_SetScanSpeed(3);

On every switch scan, the user module requires 2 cycles
at the end for data processing. Therefore, setting a scan
speed of 3 means button counts are gathered for 1 cycle
only. Because the counts are sampled by a 24 MHz

February 22, 2006 Document No. 001-25459 Rev. ** 5

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_5

AN2355

system clock the formula to determine oscillator frequency
is:

Counts
MHzFOSC #

24
= (1)

ScanSpeed = 3.

Working backwards, reading 300 counts on a sensor at
ScanSpeed(3) means Fosc = 80 kHz.

In other words, it is necessary to tune the DAC current so
that each button reads approximately 300 counts with
ScanSpeed = 3.

Table 1. Spreadsheet for Tuning DAC Current

Setting
Value

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
293 125 294 126 299 12B 294 126 298 12A 298 12A 293 125 293 125

80.54 80.54 81.91 81.9181.91 81.63 80.27 81.63

DAC Current

Raw Counts
(ScanSpeed = 3)

Sensor

Oscillator Frequency

4 5 6 70 1 2 3
22

2.35
26

2.62
20

2.21
1E

2.07
24

2.48 2.42
23

3.04
2C 2A

2.90

Table 2. Spreadsheet for Tuning Scan Speed

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
6788 1A84 6688 1A20 6725 1A45 6802 1A92 6944 1B20 6692 1A24 6758 1A66 6673 1A11

Scan Speed
DAC Current

Raw Counts
(Sensor Untouched)

10 10 12 1330 29 25 14

7
2C 2A 24 23 20 1E 22 26

3 4 5 6Sensor 0 1 2

This is a good time to introduce a spreadsheet. In the
process of tuning, it is necessary to record counts,
differences, calculated thresholds, etc. All this work is
very well suited to a spreadsheet. Table 1 shows the
spreadsheet for the project that is used to record the DAC
current settings for each button and their corresponding
oscillator frequency.

To achieve a count value of approximately 300 counts (80
kHz) for each sensor, different DAC current settings are
required. This is due to variations in the parasitic
capacitance that arise from board layout. Using a DAC
current low enough so that sensor 5 runs at 80 kHz for all
buttons results in other sensors’ oscillators running at
speeds that are not optimal.

So, what’s the solution?

In the Scan_Buttons() routine, an array can be used to
hold 8 different DAC current values. Instead of scanning
all buttons, the code loads DAC current for a button, scans
that button once only then loops to the next. This yields
individual tuning control for each button, making the board
exceptionally responsive and more noise immune.

Step 2: Setting the Scan Speed
Once each sensor is tuned for an 80 kHz oscillator
frequency, it’s time to set the scan speed. The scan speed
(Period Mode) sets the number of oscillator pulses for
which the PWM is high. Increasing the scan speed
increases two things: the counts read by the PSoC and
the time necessary to scan each sensor. This is how to get
more data out of the sensor for calibrating sensitivity and
accounting for noise.

First, verify the “counts” for each sensor without touching
the sensor. This is accomplished in the same manner as
counts were obtained while setting the DAC current. I2C is
used in the example project.

Second, gradually increase the scan speed parameter for
each sensor. As stated above, the counts increase with

scan speed. Setting scan speed to a higher number simply
means that instead of collecting counts on a sensor for
one scan and processing for two, counts are collected for
N scans and processing occurs for two. In other words:

SetScanSpeed(N) = Collect Data for N-2 cycles, process
for 2 cycles.

The optimum number of counts for each sensor depends
on the project requirements. However, counts should not
exceed 0x2000 (8192). This is explained below.

Notice that the scan speed necessary to achieve the
desired number of counts is different for each sensor. This
is again a result of the parasitic capacitances of each
sensor.

Note The raw counts for each sensor cannot exceed
0x3FFF (16,383). This occurs when the scan speed is too
high and the PSoC looks at a sensor for too long. The
variable that stores the raw counts for each sensor is an
integer, meaning that it has a functional limit of 0xFFFF
(65,535). The baselining algorithm, described later in this
document, further limits this value by one fourth. Values
that exceed this limit overflow the integer (roll it past zero).

For example, if the DAC current and scan speed
parameters return 0x5100 (20,736) counts, the integer will
overflow and instead the CSR UM will detect 0x1100
(4352) counts. This causes problems in a number of
routines including the baseline update and ESD
debounce. This will lead sensors to exhibit strange
behavior.

February 22, 2006 Document No. 001-25459 Rev. ** 6

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_6

AN2355

Step 3: Setting Thresholds
Once the DAC current and scan speed are set, it’s time to
tune the thresholds for the device. Thresholds are
predefined difference counts that correspond to sensor
activation status change.

First, some definitions:

Difference counts are the number of counts by which the
current raw counts differ from the baseline.

The baseline is a constantly updated zero value for each
button. The baseline represents the parasitic capacitance
and can be seen when no finger or other such conductive
object is present on the sensor. The baseline is used to
calculate both the noise and finger thresholds, which are
simply added to the baseline.

The noise threshold is the number of counts above and
below the baseline that are ignored by the PSoC. As long
as the difference counts do not exceed the noise
threshold, the baseline update function operates. The
noise threshold also serves a sensor deactivation
threshold, whereby the PSoC determines that a finger is
no longer present on the sensor.

The finger threshold is the number of counts above the
baseline that are necessary to detect the presence of a
finger. The counts may fall below this value (due to noise)
and the sensor will remain active. It is not until the counts
fall below the noise threshold that the sensor state is
changed to inactive.

Figure 12. Thresholds and Sensor Activation

_baBtnFThreshold

Noise ThresholdDi
ffe

re
nc

e
Co

un
ts

ON OF
F

Now for more detail…

The noise threshold is a parameter set in the CSR User
Module Parameter configuration screen of PSoC
Designer. Any button scan showing a difference less than
the noise threshold is ignored. This parameter makes the
design more robust by filtering out low amplitude noise.
Setting the noise threshold too high can filter out valid
button presses.

Part of the BaselineUpdate algorithm states that if the
counts exceed the noise threshold, the baseline is not
updated. This ensures that a finger on the sensor does not

add inappropriately high count values to the baseline
update filter. Setting the noise threshold too low will
increase the likelihood that the baseline is not updated
and limit PSoC’s ability to adjust to environmental
changes.

Finger threshold is the decision point for an ON or OFF
button. If the difference between two successive scans
exceeds this threshold, the button is flagged ON in the
variable *(name)_baSwOnMask. You can determine if a
valid button press has occurred by polling this variable.

The noise threshold and finger threshold are set for all
sensors in the CSR User Module Parameters window in
the Device Editor as shown in Figure 13.

Figure 13. Setting Thresholds Globally

Now to calculate the threshold values.

Noise Threshold
The board and code must be set up to output data and
scan continuously. Without a finger present on the sensor,
the values fluctuate slightly for each sensor. The minimum
and maximum values represent the lower and upper noise
limits. This is another time at which a spreadsheet is very
useful. See Table 3 for complete noise data for the
example system.

For sensor[0], the raw counts on the sensor fluctuate
between 0x1A84 (6788) and 0x1A56 (6742). This is an
overall difference of 46. The noisiest sensor, however, is
sensor[3] with a fluctuation of 53. Since sensor[3] is the
noisiest sensor and because the noise threshold is a
global setting in this project, the noise threshold is set high
enough to accommodate the 53 counts of fluctuation.

February 22, 2006 Document No. 001-25459 Rev. ** 7

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_7

AN2355

Table 3. Spreadsheet for Determining Noise Threshold

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
6788 1A84 6688 1A20 6725 1A45 6802 1A92 6944 1B20 6692 1A24 6758 1A66 6673 1A11
6742 1A56 6654 19FE 6673 1A11 6749 1A5D 6896 1AF0 6656 1A00 6719 1A3F 6639 19EF

Absolute 46 2E 34 22 52 34 53 35 48 30 36 24 39 27 34 22
Setting 22 1928 29 26 20

6 7Sensor

Min Counts
Max Counts

2 3 4 5

Noise

0 1

25 19

Table 4. Spreadsheet for Determining Finger Threshold

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
6788 1A84 6688 1A20 6725 1A45 6802 1A92 6944 1B20 6692 1A24 6758 1A66 6673 1A11
6903 1AF7 6834 1AB2 6881 1AE1 6929 1B11 7074 1BA2 6833 1AB1 6903 1AF7 6815 1A9F
115 73 146 92 156 9C 127 7F 130 82 141 8D 145 91 142 8E

99 102 99

765

102 109 89 91

Counts (Touched)
Signal (Difference)
Finger Theshold 81

Counts (Untouched)

Sensor 43210

The noise threshold setting is actually a positive and
negative adder to the baseline. Therefore, divide the noise
floor by two, and then add two or three to the result to give
some room for corner cases that are not seen during the
calibration view time. This yields an actual noise threshold
setting of 29.

Finger Threshold
Finger threshold is used to denote when sensors become
active. The same setup is used to determine the values for
this setting. Instead of leaving the sensors untouched,
each sensor must be activated and the result of that
activation recorded, again, in a table. The results for the
example application are shown in Table 4.

Finger threshold can be set globally in the User Module
Parameters window (shown in Figure 13). Since each
sensor in the example project has a different level of
activation, it is necessary to set the finger threshold for
each one individually. This is done in the initiation routine
using Code 4.

Code 4. Code to Set the Finger Threshold

SENSE_baBtnFThreshold[0] = 80;

This sets the finger threshold to 80 for one sensor. This
can be done for each sensor or in a structure. The result is
the same.

Figure 14 shows how these settings apply to sensor [0].

Figure 14. Button[0] Threshold Settings

In
gn

or
e

Of
f

On Observed ON = 115

Observed Noise = +/- 23

_baBtnFThreshold[0] = 80

Noise Threshold = 29

Baseline

February 22, 2006 Document No. 001-25459 Rev. ** 8

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_8

AN2355

Anything below the noise threshold is ignored. When the
difference between raw counts from one scan to the next
exceeds baBtnFThreshold[n], the sensor is “ON.” Once
the difference falls below baBtnFThreshold[n], the sensor
is “OFF.” Actually pretty simple, but very dependant on
setting up these thresholds correctly.

Signal-to-Noise Ratio
While calculating the signal-to-noise ratio is not necessary,
it is useful when determining the efficiency of a sensor.

Table 5. Spreadsheet for Calculating Signal-to-Noise Ratio

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
115 73 146 92 156 9C 127 7F 130 82 141 8D 145 91 142 8E
23 17 17 11 26 1A 26.5 1A 24 18 18 12 19.5 13 17 11

7

SNR = 20LOG(S/N) db
NOISE
SIGNAL

3 4 5 6Sensor 0 1 2

15 18 17 1814 19 16 14

February 22, 2006 Document No. 001-25459 Rev. ** 9

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_9

AN2355

Appendix 1

main.c

//--
// Cap Touch code for Application Note
//
// Author: Darrin Vallis
//--

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all UMs
#include "main.h"

void main()
{
 Setup_IO(); //Set up GPIO for address inputs
 Setup_I2C(); //Configure and start I2C engine
 Setup_Touch(); //Configure cap touch
 M8C_EnableGInt; //Start everything

 while(1)
 {
 Scan_Buttons(); //Switch data in *SENSE_baSwOnMask
 Set_LEDS(); //Turn on LEDs
 Set_Interrupt_Pin(); //Set or clear int pin
 }
}

main.h

#define A1 0x40 // A1 = P1_6
#define A0 0x08 // A0 = P1_3
#define I2CBASE 0x40 // I2C address = 0x86/0x86 with no pull-downs
#define LED_AUTO 0x04
#define NBUTTONS 8 // Number of buttons
#define INT_PIN 0x10 // P1_4
#define INT_POL_MASK 0x02 // Control register, bit 1
#define INT_ENA_MASK 0x01 // Control register, bit 0
#define INT_STAT_MASK 0x80 // Control register, bit 7

struct I2C_RegType
{
 BYTE Control; // Control register
 BYTE LEDs; // LED On/Off register
 BYTE Buttons; // Button state
#ifdef debug
 int adc[NBUTTONS]; // Button raw data
 int baseline[NBUTTONS]; // Baseline data
 int difference[NBUTTONS]; // Button differences
#endif
} I2Cregs;

BYTE dacCurrent[] = {44,42,36,35,32,30,34,38};
// Individual DAC current for switch 0 - 7
BYTE scanSpeed[] = {30,29,25,14,10,10,12,13};
// Individual scan speed for switch 0 - 7
BYTE prev_buttons = 0;
// Keeps track of button press status

void Setup_IO(void)
{
 int i;

February 22, 2006 Document No. 001-25459 Rev. ** 10

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_10

AN2355

 //Make sure the LEDs are OFF
 PRT2DR = 0xFF;
 I2Cregs.LEDs = 0x00;

 //ReConfigure I2C I/O. Fixes Start-Up glitch by leaving IO
 //in tri-state on power-up, then switching to I2C mode
 PRT1DM2 |= 0xA0;
 PRT1DM1 |= 0xA0;
 PRT1DM0 |= 0xA0;

 //Set INT to default polarity (Active Low), i.e., no button pressed
 PRT1DR |= INT_PIN;

 //Set default INT values in control reg
 I2Cregs.Control = 0x00;
 I2Cregs.Control &= ~INT_ENA_MASK; //Enable interrupt pin
 //Active low polarity
 //No interrupt pending

 //Set Pull-Ups for A1/A0, P1_6/P1_3
 PRT1DR |= 0x48;
}

void Setup_I2C(void)
{
 unsigned char PortData, I2Caddr, I2Cstatus;

 //Set up I2C address
 //Internal to PSoC, the address is right shifted by 1 bit
 //I2CBASE = b0100 0000
 //If A0 is pulled low on the chip, we set A0, 0000 0001
 //If A1 is pulled low on the chip, we set A1, 0000 0010
 //When no resistors are placed, the address is 0100 0011
 //This translates to b10000110 or 0x87R, 0x86W. Clear ??
 PRT1DR |= (A1|A0); //Turn
on internal pull-ups for A1,A0 pins
 PortData = PRT1DR; //Read
A1,A0 data from P1_6, P1_3
 I2Caddr = I2CBASE;
 I2Caddr = (PortData & A0) ? (I2Caddr|0x01) : I2Caddr;

//If A0 bit=1, OR address with 0x01
 I2Caddr = (PortData & A1) ? (I2Caddr|0x02) : I2Caddr;

//If A1 bit=1, OR address with 0x02
 I2C_Start(); //Start I2C hardware
 I2C_SetAddr(I2Caddr); //Set I2C address from strap pins
 I2C_SetRamBuffer(sizeof(I2Cregs), 6, (BYTE *) &I2Cregs);

//I2Cregs defined in main.h

 //Init the other registers
 I2Cregs.Control |= LED_AUTO ;
 I2Cregs.Buttons = 0x00;
}

void Setup_Touch(void)
{
 SENSE_Start();

 SENSE_baBtnFThreshold[0] = 80;
 SENSE_baBtnFThreshold[1] = 100;
 SENSE_baBtnFThreshold[2] = 100;
 SENSE_baBtnFThreshold[3] = 90;
 SENSE_baBtnFThreshold[4] = 90;
 SENSE_baBtnFThreshold[5] = 100;
 SENSE_baBtnFThreshold[6] = 100;

February 22, 2006 Document No. 001-25459 Rev. ** 11

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_11

AN2355

 SENSE_baBtnFThreshold[7] = 100;
}

BYTE Scan_Buttons()
{
 BYTE i,status;

for(i=0; i < NBUTTONS; i++)
{
 SENSE_SetDacCurrent(dacCurrent[i],SENSE_DAC_LOW);

//Set DAC current for this button
 SENSE_SetScanSpeed(scanSpeed[i]);

//Set scan speed for this button
 SENSE_StartScan(i,1,SENSE_SCAN_ONCE); //Scan the button
 while(!(SENSE_GetScanStatus() & SENSE_SCAN_SET_COMPLETE));

//Wait until it's done
#ifdef debug
 I2Cregs.adc[i] = SENSE_iReadSwitch(i);
 I2Cregs.baseline[i] = SENSE_iaSwBaseline[i];
 I2Cregs.difference[i]= SENSE_iaSwDiff[i];
#endif
 }
 status = SENSE_bUpdateBaseline(0);

 if(*SENSE_baSwOnMask!=prev_buttons) prev_buttons = *SENSE_baSwOnMask;

 return(status);
}

void Set_Interrupt_Pin()
{
 if(*SENSE_baSwOnMask!=prev_buttons)
 {
 if(!(I2Cregs.Control&INT_ENA_MASK))
 {
 I2Cregs.Control |= INT_STAT_MASK; //Set interrupt in register
 PRT1DR = (I2Cregs.Control&INT_POL_MASK)? PRT1DR|INT_PIN :
PRT1DR&~INT_PIN; //And set INT pin
 }
 }

 if (I2C_GetActivity() & I2C_READ_ACTIVITY) //On I2C read
 {
 I2Cregs.Control &= ~INT_STAT_MASK; //Clear control register status
bit
 PRT1DR = (I2Cregs.Control&INT_POL_MASK)? PRT1DR&~INT_PIN : PRT1DR|INT_PIN;
//Clear INT pin
 }
}

void Set_LEDS()
{
 PRT2DR = *SENSE_baSwOnMask;
}

February 22, 2006 Document No. 001-25459 Rev. ** 12

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_12

AN2355

About the Author
Name: Darrin Vallis

Title: Principal Field Applications
Engineer

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new
documentation number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all
subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their
respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

February 22, 2006 Document No. 001-25459 Rev. ** 13

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-25459_pdf_p_13

	Introduction
	Background Requirements
	Building a Project
	Program Structure
	Appendix 1
	About the Author

